Search results for "Riemannian Geometry"

showing 10 items of 46 documents

Differentiability of the isoperimetric profile and topology of analytic Riemannian manifolds

2012

Abstract We show that smooth isoperimetric profiles are exceptional for real analytic Riemannian manifolds. For instance, under some extra assumptions, this can happen only on topological spheres. To cite this article: R. Grimaldi et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).

Mathematics - Differential GeometryIsoperimetric dimensionRiemannian geometryTopology01 natural sciencessymbols.namesakeRicci-flat manifoldFOS: MathematicsDifferentiable functionMorse theory0101 mathematicsTopology (chemistry)Computer Science::DatabasesIsoperimetric inequalityMorse theoryMathematicsRiemann surface010102 general mathematicsGeneral Medicinecalibration53C20;49Q20;14P15;32B20010101 applied mathematicsDifferential Geometry (math.DG)Riemann surface[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]symbolsMathematics::Differential GeometryIsoperimetric inequality
researchProduct

Geodesic flow of the averaged controlled Kepler equation

2008

A normal form of the Riemannian metric arising when averaging the coplanar controlled Kepler equation is given. This metric is parameterized by two scalar invariants which encode its main properties. The restriction of the metric to $\SS^2$ is shown to be conformal to the flat metric on an oblate ellipsoid of revolution, and the associated conjugate locus is observed to be a deformation of the standard astroid. Though not complete because of a singularity in the space of ellipses, the metric has convexity properties that are expressed in terms of the aforementioned invariants, and related to surjectivity of the exponential mapping. Optimality properties of geodesics of the averaged controll…

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyGeodesicGeneral MathematicsCut locusConformal map02 engineering and technologyKepler's equationFundamental theorem of Riemannian geometry01 natural sciencesConvexityIntrinsic metricsymbols.namesake020901 industrial engineering & automationSingularity0101 mathematicsorbit transferMathematicsApplied Mathematics010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]cut and conjugate lociRiemannian metrics49K15 70Q05symbols[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
researchProduct

Optimal control and Clairaut-Liouville metrics with applications

2014

The work of this thesis is about the study of the conjugate and cut loci of 2D riemannian or almost-riemannian metrics. We take the point of view of optimal control to apply the Pontryagin Maximum Principle in the purpose of characterize the extremals of the problem considered.We use geometric, numerical and integrability methods to study some Liouville and Clairaut-Liouville metrics on the sphere. In the degenerate case of revolution, the study of the ellipsoid uses geometric methods to fix the cut locus and the nature of the conjugate locus in the oblate and prolate cases. In the general case, extremals will have two distinct type of comportment which correspond to those observed in the r…

Ising chains of spinsLiouville metricsCut LocusContrôle optimal géométrique[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Almost-Riemannian geometryChaînes de spins de type IsingGeometric optimal control[ MATH.MATH-DG ] Mathematics [math]/Differential Geometry [math.DG]Conjugate Locus[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]Métriques de LiouvilleMétrique pseudo-riemannienneLieu conjugué[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG]Lieu de coupure
researchProduct

Differentiability properties of the isoperimetric profile and topology of analytic Riemannian manifolds.

2009

Abstract: We show that smooth isoperimetric profiles are exceptional for real analytic Riemannian manifolds. For instance, under some extra assumptions, this can happen only on topological spheres

Riemannian Geometry Real Analytic Geometry.
researchProduct

Note on the pragmatic mode-sum regularization method: Translational-splitting in a cosmological background

2021

The point-splitting renormalization method offers a prescription to calculate finite expectation values of quadratic operators constructed from quantum fields in a general curved spacetime. It has been recently shown by Levi and Ori that when the background metric possesses an isometry, like stationary or spherically symmetric black holes, the method can be upgraded into a pragmatic procedure of renormalization that produces efficient numerical calculations. In this note we show that when the background enjoys three-dimensional spatial symmetries, like homogeneous expanding universes, the above pragmatic regularization technique reduces to the well established adiabatic regularization metho…

PhysicsSpacetime010308 nuclear & particles physicsFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)16. Peace & justiceIsometry (Riemannian geometry)01 natural sciencesGeneral Relativity and Quantum CosmologyRenormalizationTheoretical physicsQuadratic equationRegularization (physics)0103 physical sciencesMetric (mathematics)Homogeneous space010306 general physicsAdiabatic process
researchProduct

Rigidité, comptage et équidistribution de chaînes de Cartan quaternioniques

2020

We prove an analog of Cartan's theorem, saying that the chain-preserving transformations of the boundary of the quaternionic hyperbolic spaces are projective transformations. We give a counting and equidistribution result for the orbits of arithmetic chains in the quaternionic Heisenberg group.; Nous montrons un analogue d'un théorème de Cartan, disant que les transformations préservant les chaînes sur le bord d'un espace hyperbolique quaternionien est une transformation projective. Nous donnons un résultat de comptage et d'équidistribution pour une orbite de chaînes arithmétiques dans le groupe de Heisenberg quaternionique.

Mathematics - Differential GeometrylukuteoriaAlgebra and Number TheoryMathematics - Number TheoryApplied Mathematicsryhmäteoria[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT][MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]quaternionic Heisenberg groupdifferentiaaligeometriaquaternionic hyperbolic geometryequidistributionsub-Riemannian geometry[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]aritmetiikkacountingCartan chainGeometry and TopologyMathematics::Differential GeometryCygan distanceMathematics - Group TheoryAnalysis11N45 (Primary) 11E39 11F06 11N45 20G20 53C17 53C55 (Secondary)
researchProduct

Local softening of information geometric indicators of chaos in statistical modeling in the presence of quantum-like considerations

2013

In a previous paper (C. Cafaro et al., 2012), we compared an uncorrelated 3D Gaussian statistical model to an uncorrelated 2D Gaussian statistical model obtained from the former model by introducing a constraint that resembles the quantum mechanical canonical minimum uncertainty relation. Analysis was completed by way of the information geometry and the entropic dynamics of each system. This analysis revealed that the chaoticity of the 2D Gaussian statistical model, quantified by means of the Information Geometric Entropy (IGE), is softened or weakened with respect to the chaoticity of the 3D Gaussian statistical model due to the accessibility of more information. In this companion work, we…

Quantum PhysicsEntropy (statistical thermodynamics)GaussianGeneral Physics and AstronomyFOS: Physical sciencesStatistical modelQuantum entanglementNonlinear Sciences - Chaotic DynamicsUncorrelatedsymbols.namesakeprobability theory; Riemannian geometry; chaos; complexity; entropysymbolsInformation geometryStatistical physicsChaotic Dynamics (nlin.CD)Quantum Physics (quant-ph)QuantumSofteningMathematics
researchProduct

Some remarks on minimal surfaces in riemannian manifolds

1970

Pure mathematicsCurvature of Riemannian manifoldsRiemannian submersionApplied MathematicsGeneral Mathematics010102 general mathematicsMathematical analysisFundamental theorem of Riemannian geometryRiemannian geometry01 natural sciencesLevi-Civita connectionsymbols.namesakeRicci-flat manifold0103 physical sciencessymbolsMinimal volume010307 mathematical physicsSectional curvature0101 mathematicsMathematicsCommunications on Pure and Applied Mathematics
researchProduct

Bicycle paths, elasticae and sub-Riemannian geometry

2020

We relate the sub-Riemannian geometry on the group of rigid motions of the plane to `bicycling mathematics'. We show that this geometry's geodesics correspond to bike paths whose front tracks are either non-inflectional Euler elasticae or straight lines, and that its infinite minimizing geodesics (or `metric lines') correspond to bike paths whose front tracks are either straight lines or `Euler's solitons' (also known as Syntractrix or Convicts' curves).

Mathematics - Differential GeometryGeodesicGeneral Physics and AstronomyGeometryRiemannian geometry01 natural sciencessymbols.namesakeMathematics - Metric GeometryClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsMathematical PhysicsMathematics53C17 (Primary) 53A17 53A04 (Secondary)Group (mathematics)Plane (geometry)Applied Mathematics010102 general mathematicsMetric Geometry (math.MG)Statistical and Nonlinear Physics010101 applied mathematicsDifferential Geometry (math.DG)Mathematics - Classical Analysis and ODEsMetric (mathematics)Euler's formulasymbolsNonlinearity
researchProduct

The Riemannian manifold of all Riemannian metrics

1991

In this paper we study the geometry of (M, G) by using the ideas developed in [Michor, 1980]. With that differentiable structure on M it is possible to use variational principles and so we start in section 2 by computing geodesics as the curves in M minimizing the energy functional. From the geodesic equation, the covariant derivative of the Levi-Civita connection can be obtained, and that provides a direct method for computing the curvature of the manifold. Christoffel symbol and curvature turn out to be pointwise in M and so, although the mappings involved in the definition of the Ricci tensor and the scalar curvature have no trace, in our case we can define the concepts of ”Ricci like cu…

Mathematics - Differential GeometryChristoffel symbolsGeneral MathematicsPrescribed scalar curvature problem58D17 58B20Mathematical analysisCurvatureLevi-Civita connectionFunctional Analysis (math.FA)Mathematics - Functional Analysissymbols.namesakeDifferential Geometry (math.DG)symbolsFOS: MathematicsSectional curvatureMathematics::Differential GeometryExponential map (Riemannian geometry)Ricci curvatureScalar curvatureMathematics
researchProduct